
Команда "За СКОБКАМИ"
Сетевой проект "Тайны натурального ряда чисел"
Изображения треугольника Паскаля
Треугольник Паскаля — арифметический треугольник, образованный биномиальными коэффициентами и назван в честь великого французского математика Блеза Паскаля. В действительности, треугольник Паскаля был известен задолго до 1653 года, что является датой выхода "Трактата об арифметическом треугольнике". Так, этот треугольник воспроизведен на титульном листе учебника арифметики, написанном в начале XVI Петром Апианом, астрономом из Ингольтштадского университета. Изображен такой треугольник и на иллюстрации в книге одного китайского математика, выпущенной в 1303 году. Омар Хайям, не только философ и поэт, но и математик, знавший о существовании треугольника около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.
Из книги "Математические новеллы" (М., Мир, 1974) Мартина Гарднера известно высказывание: "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике".
Также известна схема построения треугольника, предложенная Гуго Штейнгаузом в его классическом «Математическом калейдоскопе»: предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смайликом, а тремя, соответственно - розовыми. Это один из вариантов построения треугольника.
На вершине треугольника стоит 1. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину. Вдоль диагоналей параллельных сторонам треугольника (на рисунке отмечены зелеными линиями) выстроены треугольные числа и их обобщения на случай пространств всех размерностей.
Треугольные числа в самом обычном и привычном нам виде показывают, сколько касающихся кружков можно расположить в виде треугольника - как классический пример начальная расстановка шаров в бильярде. К одной монетке можно прислонить еще две - итого три - к двум можно приладить еще три - итого шесть. Продолжая наращивать ряды с сохранением формы треугольника, получим ряд 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66..., что и показывает вторая зеленая линия. Этот замечательный ряд, каждый член которого равен сумме натурального ряда чисел (55=1+2+3+4+5+6+7+8+9+10), содержит также множество знакомцев, хорошо известных любителям математики: 6 и 28 - совершенные числа, 36 - квадратное число, 8 и 21 - числа Фибоначчи.
Следующая зеленая линия покажет нам тетраэдральные числа - один шар мы можем положить на три - итого четыре, под три подложим шесть - итого десять, и так далее.
А следующая зеленая линия (1, 5, 15, 35,...) продемонстрирует попытку выкладывания гипертетраэдра в четырехмерном пространстве - один шар касается четырех, а те, в свою очередь, десяти... В нашем мире и нашем измерении это невозможно, возможно только в четырехмерном, виртуальном. И тем более пятимерный тетраэдр, о котором свидетельствует следующая зеленая линия, он может существовать только в рассуждениях топологов.
А о чем же говорит нам самая верхняя зеленая линия, на которой расположились числа натурального ряда? Это тоже треугольные числа, но одномерные, показывающие, сколько шаров можно выложить вдоль линии - сколько есть, столько и выложите. Если уж идти до конца, то самый верхний ряд из единиц - это тоже треугольные числа в нульмерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем, ибо просто негде - нет ни длины, ни ширины, ни высоты.
Даже беглого взгляда, брошенного на треугольник Паскаля, достаточно, чтобы отметить следующие любопытные факты: 10 ядер можно сложить и в виде тетраэдра и в виде плоского треугольника. А 56 гиперядер, образующих тетраэдр в пятимерном пространстве, можно уложить в обычный привычный трехмерный тетраэдр, однако, если бы мы попытались выложить из 56 ядер треугольник, то одно ядро осталось бы лишним.
А вот еще два интересных свойства треугольника Паскаля. Чтобы найти сумму чисел, стоящих на любой диагонали от начала до интересующего нас места, достаточно взглянуть на число, расположенное снизу и слева от последнего слагаемого (слева для правой диагонали, для левой диагонали будет справа, а вообще - ближе к середине треугольника). Пусть, например, мы хотим вычислить сумму чисел натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму. Чему равна сумма первых восьми треугольных чисел? Отыскиваем восьмое число на второй диагонали и сдвигаемся вниз и влево. Ответ: 120. Но, кстати, 120 - тетраэдральное число. Следовательно, взяв все шары, из которых сложены 8 первых треугольников, мы могли бы сложить тетраэдр.
Суммы чисел, стоящих вдоль не столь круто падающих диагоналей (на рисунке отмечены красными линиями) образуют хорошо известную последовательность Фибоначчи).
Треугольник Паскаля и числа Фибоначчи
Если строки в треугольнике Паскаля выровнять по левому краю, то суммы чисел, расположенных вдоль диагоналей, идущих слева направо и снизу вверх, равны числам Фибоначчи — 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,…11235813213455891442333776109871597… (каждое число в этой последовательности равно сумме двух предыдущих, а начинают последовательность две единицы):

Треугольники Паскаля и Серпинского
Если раскрасить нечётные числа в треугольнике Паскаля в один цвет, а чётные — в другой, получится такая картина (на рисунке 10.1. «Треугольник Паскаля — Серпинского» указанным образом раскрашены числа в первых 128 строчках):

Построение треугольника
Похожее изображение можно построить следующим образом. В закрашенном треугольнике перекрасим в другой цвет его серединный треугольник (образованный серединами сторон исходного). Три маленьких треугольника, расположенные по углам большого, останутся закрашенными в прежний цвет. Поступим с каждым из них точно так же, как мы поступили с большим, то есть перекрасим в каждом серединный треугольник. То же самое сделаем с оставшимися треугольниками старого цвета. Если эту процедуру проделывать до бесконечности, на месте исходного треугольника останется двухцветная фигура. Та её часть, которая не перекрашена, называется треугольником Серпинского. Несколько первых этапов построения треугольника Серпинского показаны на рисунке
Треугольник Паскаля и простые числа
О таинственной связи треугольника Паскаля с простыми числами можно прочитать в книге в небольшой заметке Ю. Матиясевича. Заменим в треугольнике Паскаля числа на их остатки от деления на номер строки. Расположим строки в полученном треугольнике таким образом, чтобы следующая строка начиналась на две колонки правее начала предыдущей . Тогда столбцы с простыми номерами будут состоять из одних нулей, а в столбцах, чьи номера составные, найдётся ненулевое число.

Технический музей Вены
Треугольник Паскаля двумерный, лежит в плоскости. Непроизвольно появляется мысль - а нельзя ли его закономерности распространить на трехмерный (и четырех -...) аналог? Оказывается можно! Существует трехмерный аналог треугольника - пирамида Паскаля, ее связь с триномиальными коэффициентами. Пирамиду Паскаля можно строить в форме тетраэдра, а также пирамиды с различными значениями двухгранных углов, один из которых прямой.
По трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней представляет собой треугольник Паскаля. Любой внутренний элемент пирамиды Паскаля, стоящий в n-м сечении, равен сумме трех элементов, расположенных в углах элементарного треугольника (n-1)-го сечения пирамиды. Сечение получается из треугольника Паскаля, основанием которого служит n-я строка Паскаля, умножением элементов его строк почленно на элементы основания, повернутого против часовой стрелки на угол /2.
Если сечение пирамиды Паскаля является правильным треугольником, то при любом n оно имеет три оси симметрии. На рисунке указаны оси симметрии сечения при n = 4.
